
Malleable VIs

Sam Sharp
MediaMongrels Ltd

sam@mediamongrels.com

Introduction

This presentation…
…is an introduction to Malleable VIs

…is a summary of some blog posts
available on my website

…is similar to Stephen Loftus-
Mercer’s CLA Summit / NI Week
presentation

but I am going to show some
practical examples from my own
code

…is intended to provide inspiration
on how you can improve code re-
use in your own projects

…should give you confidence to
start using and writing your own
Malleable VIs

https://www.mediamongrels.com/blog

https://www.mediamongrels.com/blog

What is a Malleable VI?

• A special type of VI where the input/output terminals can adapt to
the wired data type

• Introduced in LabVIEW 2017
– Made better in 2017 SP1 and 2018

• Created by:
– New… -> Malleable VI

– Save as ‘.vim’ on existing VI and enable in-lining*
*there are some caveats around this I’ll discuss later

• Similar to ‘generics’ (Java/C#) or ‘templates’ (C++) in other
languages

• Before Malleable VIs, this functionality was implemented with
polymorphic VIs or variants (also xnodes!)

Basic Example - Demo

• LabVIEW 2017+
shipping examples (tan
background)
– Array Palette

– Timing

– Comparison

• LabVIEW 2018 brings
new structure
– Type Specialisation

– Assert Type primitives

(more on these later!)

• Detailed examples
included in LabVIEW

Why use Malleables?

• #1 Reason: Improve code re-use

30+ VIs to maintain

1 VIM to maintain

What about FXP or
array of clusters?

No broken run arrow = valid input

Malleable VIs – Use Cases

• Any situation where you File->Save As… and
replace the input/output types

• Numeric/Mathematical Functions

• Calibration Functions

• Array Manipulation

• Wrapping communications primitives (e.g.
Queue/Notifier)

• Debugging

• Logging

• Application Frameworks?!

• …and many more!

Practical Example 1:

Configuration Library
• Simple library for loading/saving a configuration

cluster to INI file
– Based on OpenG Variant Configuration VIs

– Uses ‘Default Values’ for missing INI keys

Reusable VIM

Project-Specific Load VI

Type Specialisation Structure

• New Structure for Malleable
VIs in 2018

• Allows special handling of
certain data types

• Accepts first frame that will
compile

• Use Assert VIs to force data
type match

• Example:
– Scalar to String.vim

Strings

Paths

Floats

Booleans

Practical Example 2:

Set Enabled State.vim

Old UI Library New (Demo)

• No property nodes in a Malleable VI (due to inlining)
– But you can wrap into a standard SubVI!

Malleables & LVOOP:

Hardware Abstraction (HAL)
• If you don’t currently use LabVIEW classes…

– Do not be afraid!

– Following examples use classes for hardware abstraction

– Good starting point for LVOOP

– Allows substituting of VIs at run-time using Dynamic

Dispatch (e.g. Simulated vs Physical Hardware)

Practical Example 3:

TestStand Project
• Parametric Test Station

– ~8 different types of measurement
hardware with requirement to
support 2/3 different devices

– Working remotely, no access to
hardware

– Most hardware is GPIB, but there
are some exceptions (e.g. RS-232,
USB)

– Using Hardware Abstraction for
Simulated/Physical hardware

• How to implement common code
between simulated devices (e.g.
simulation panel) and GPIB
instruments

– CS ‘Mixin’/‘Interface’ using Malleable
VIs

– LV does not support multiple
inheritance (another possible
solution) How to implement this functionality?

Malleable VI Class Adaptation

• Malleable VIs can also adapt to class wires to call methods

• Classes can be unrelated (i.e. no inheritance)
– VI Name & Connector Pane must match

• LabVIEW 2017+ Example – HVAC System

• My Demo
– Get String Data.vim and Log String to File.vim can be used with any

class with a ‘Get String Data’ method (think Serialisation!)

Practical Example 3:

TestStand Project
• Simulation Utility – Enqueue

Command.vim
– Sends a command to the instance of

the simulation panel + waits for reply

– Calls ‘Get Simulation Queue’
method of simulation classes

– Used by every simulation class

• GPIB Write / GPIB Write &
Read.vim

– Message & Message+Reply GPIB
communications

– Calls ‘Get GPIB Settings’ method of
hardware classes

– Used by every GPIB instrument
class

Read Laser Enable.vi – Newport 8000 (GPIB)Read Laser Enable.vi - Simulated

Considerations

• Requires in-lining therefore:
– No property/invoke nodes (see workaround)

– No automatic error handling

– No debugging

– No recursion…recursion…recursion…

• Malleable VIs are somewhat confusing to debug

– Deliberately creating broken code

– Use ‘Convert to standard instance of VI

• No run-time performance impact – Malleables are ‘flattened’ during
compilation (should also work on FPGA/RT)

• ‘New Feature’ – beware potential undiscovered bugs

• If using class adaptation, suggest creating dummy interface class to avoid
dependencies on your implementation classes

• Malleable VIs cannot be called directly in TestStand 2016/2017…
– …but code modules can contain malleable VIs

– …but beware possible deployment errors (build early + often)

• Not yet available in LabVIEW NXG

Summary

• Introduced Malleable VIs
– Malleable VIs improve code re-use and provide a method

to implement OO ‘interfaces’

• Features
– VI that adapts to type

– Type Specialisation Structure (TSS)

– Class Adaptation

• Practical Examples
– Configuration Library

– UI Utility Library

– TestStand Project

• Highlighted some additional considerations for their
use

Thanks for listening!

Questions?

Ideas for Malleable VIs?

www.GDevCon.com

